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Connecting cluster dynamics and protein folding
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Abstract. The relaxation dynamics of clusters can be interpreted in terms of the topographies of their
potential surfaces. Systems with short-range potentials have sawtooth-like potential surfaces with small
drops in energy from one local minimum to the next and few-body motions as the clusters move from
one minimum to another; such systems readily take on amorphous structures. These are called “glass-
formers”. Systems with long-range forces have potentials whose topographies are like rough staircases,
with some large drops in energy from one minimum to the next; their well-to-well passages involve very
collective motions and such systems are excellent structure-seekers. They find their way to well-ordered,
highly selective structures under almost all circumstances. These characteristics generalize to describe the
potential surfaces and folding behavior of polypeptides and proteins. The forces are effective long-range
forces due to the polymer chain. Staircase topographies emerge both from direct sampling of potential
surfaces and from the inversion of the kinetics generated by a much more abstract topological model, from
which folding pathways can be inferred.

PACS. 36.40.-c Atomic and molecular clusters – 87.10.+e General theory and mathematical aspects –
87.15.-v Biomolecules: structure and physical properties

1 Introduction

A central but relatively ill-studied issue in the science of
clusters and other pico-scale systems is finding the rela-
tionships among the interparticle forces, the topographies
of the multidimensional potential surfaces and the dynam-
ics and relaxation behavior of these systems. Put in very
coarse terms, we may ask, “Why do some systems, such as
argon clusters, tend to assume amorphous structures while
others, such as alkali halide clusters, find their way just
to any of the very small fraction of locally-stable struc-
tures that are rock-salt crystals? Why are some systems
“glass-formers” and others “structure-seekers”?” What is
it about the interparticle forces that makes a topography
that leads the system to a select few possible structures,
or, on the other hand, that leaves a system in any of a very
large number of locally-stable structures with no particu-
lar selectivity or structure type?

A question that follows naturally from these is the con-
sequence of the attention currently focused on the folding
of proteins: Are the reasons that explain why some clus-
ters are structure-seekers the same reasons that underlie
the remarkable selectivity that many natural proteins ex-
hibit when they fold into physiologically active structures?
Do proteins that are good, efficient folders have potential
surfaces with topographies similar to those of clusters that
are good structure-seekers?
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We shall see here how, at least qualitatively, we can
relate interparticle forces to topographies, dynamics and
relaxation properties of clusters. We then go on to see
how these concepts extend as well to proteins, whether the
potential surface is postulated or inferred from an abstract
model of folding dynamics.

2 Atomic clusters: Glass-formers
and structure-seekers

There is a dramatic difference between the behavior of ar-
gon clusters and alkali halide clusters when they, in sim-
ulations, are cooled from their liquid states. The alkali
halide clusters find their way to rocksalt structures even
when cooled at rates up to 1013 K/s, roughly five vibra-
tional periods, although their rocksalt minima are out-
numbered by amorphous minima roughly 1012:1 [1]. By
contrast, argon clusters cooled even at 109 K/s find them-
selves distributed among many amorphous structures; the
global minimum for Ar19 can be the most populous geo-
metric state under such conditions but never collects even
half the population of the simulated sample [2]. These re-
sults stimulated the realization that it could be worth-
while to investigate what attainable characteristics of the
topographies of multidimensional potential surfaces would
tell us the extent to which a pico-scale system would be a
glass-former or a structure-seeker.
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Pursuing this problem had, by 1996, become a
tractable problem because relatively efficient methods had
become available to locate not only local minima but sad-
dle points as well, if one were given a moderately sim-
ple form for a potential surface, even for a 50- or 100-
particle cluster. Fortunately, it had become evident that
the Lennard-Jones potential gave a rather good represen-
tation of the potential for argon clusters, and the Born-
Mayer potential or others similar to it [3], for alkali halide
clusters.

The format that made the collected sets of minima
and saddles linking them particularly useful was a projec-
tion onto a plane of the linked successions of stationary
points, with the minima in monotonic sequences of in-
creasing energy, from the lowest minimum in a basin [4,
5]. This representation immediately provided new insights:
a) it revealed that the multidimensional surface could be
thought of as consisting of large, rough-walled basins with
some cross-links between local minima in different mono-
tonic sequences; b) it showed that the patterns of these
monotonic sequences of stationary points were quite dif-
ferent for glass-formers and structure-seekers. The pat-
terns for glass-formers are sawtooth-like; the patterns for
structure-seekers are like rough staircases [2].

This analysis, carried a bit further, revealed even richer
information. By following the structures of the clusters at
the successive stationary points along arbitrarily-selected
sequences from high to low energies, it was easy to see the
amorphous structures in which the glass-formers became
trapped, and equally easy to see how the large drops in
energy along the staircases of the structure-seekers were
associated with the formation of crystalline nuclei. Then,
by applying a criterion developed by Stillinger and Weber
[6], essentially the summed fourth powers of the distances
all the particles move, divided by the square of the sum of
the corresponding squares, one could evaluate the effective
number of particles moving when the system passes from
one minimum to the next. The rare gas clusters, with par-
ticles bound by Lennard-Jones forces, exhibited almost ex-
clusively few-body motions, two to four particles out of 19,
for example, in those interwell passages, while the alkali
halide clusters, bound by long-range Coulomb forces, ex-
hibited extremely collective, many-body motions in their
interwell transformations. As many as half the particles of
a (KCl)32 cluster may take part in the motion [2].

This set of relations gives a consistent qualitative pic-
ture of the relations among the interparticle forces, the
topography of the multidimensional potential surface, the
dynamics of motion and relaxation on that surface and
the tendency of a system to be a glass-former or a
structure-seeker. While a systematic quantification of
these ideas still lies ahead, some steps have been made
in that direction [7,8].

The relationship between the range of the poten-
tial and the structure-seeking or glass-forming character
also remains to be quantified systematically. Some results
from simulation give us the first insights into this ques-
tion. If the long-range Coulomb potential of the alkali
halide cluster is replaced by a shielded Coulomb poten-

tial, q1q2e2e−βR/R, then the surface becomes sawtooth-
like and the system becomes a glass-former if the shielding
distance β−1 is about the distance of the second-nearest
neighbor [1].

3 Topographies for protein models

The foregoing discussion implies that a simple, structure-
seeking cluster such as (KCl)32 finds a crystalline local-
minimum structure against statistical odds even greater
than might be expected for a peptide of the same num-
ber of atoms “seeking” a specific folded structure. This
observation immediately suggests the next step of our in-
vestigation: do the same generalizations that describe the
behavior of clusters apply also to proteins? To investi-
gate this, we first examined a model system, a 46-bead
model that had been introduced as a lattice model by
Skolnick and his collaborators [9] and then extended to a
continuum model by Honeycutt and Thirumalai [10]. This
system consists of four rather rigid strands, two made of
only hydrophobic beads and two, of alternating hydropho-
bic and hydrophilic beads; the strands are linked by three
segments of “neutral” beads, that have soft bending angles
to enable the strands to align in antiparallel sequence. The
forces between nonbonded (non-neighboring) beads simu-
late forces that make hydrophobic beads attract one an-
other and hydrophobic beads to turn outward, as if to an
aqueous solvent. The system has a global minimum with
β-barrel structure. If the system is simulated with an ini-
tial state chosen at random or with the strands stretched
into something of a linear form, then it can find its way
to the global minimum or to any of several other, very
similar β-barrel structures. These structures all have very
similar energies.

With sufficiently slow annealing, the system can find
its way to the global minimum, but it resembles the alkali
halides insofar as it does not distinguish readily among
the β-barrel structures, just as the alkali halide cluster
does not distinguish readily among its rocksalt structures.
In the sense that this system does not go naturally and
efficiently to one single “native” structure, it is sometimes
said to be not a good folder; in the sense that it almost
invariably goes to one of the low-energy, β-barrel struc-
tures in any isothermal or moderate-speed annealing sim-
ulation, it is a good folder. (This system raises a question
that seems to arise with increasing frequency in the field of
protein structure and dynamics: Are “native” structures
of proteins unique, or can they exhibit some variety of
structures, especially in the scaffolding distant from ac-
tive sites, and remain physiologically active?)

The potential surface of this 46-bead model can be
searched, just like those of clusters, for minima and the
saddles that link them, and, from these, one can con-
struct statistical samples of sequences of stationary points
that are monotonic in the energies of their local min-
ima. Such sequences give staircase patterns very much
like those of alkali halide clusters with about the same
numbers of particles. The patterns of topographies lead-
ing into the various basins, with their slightly different



R.S. Berry et al.: Connecting cluster dynamics and protein folding 49

β-barrel minimum-energy structures, are virtually indis-
tinguishable. While the explicit forces between nonbonded
beads are Lennard-Jones-like in this model, the presence
of the polymer chain makes all the forces in this system
effectively long-range. The effective numbers of moving
particles in inter-well passages are almost always large, as
in the structure-seeking clusters. There are a few motions
that involve only “flopping” of the few beads in the soft
neutral links, but most well-to-well motions involve about
half the particles in the system, or more. In short, the same
generalizations that distinguish structure-seeking clusters
characterize a structure-seeking protein model as well [11].

4 Protein folding and topography:
A backward inference

It is quite feasible to examine topographies of small
polypeptides with force field models that include all
the atoms and even, if one chooses, surrounding water
molecules. Such examinations show, for example, that
small alanine polymers such as the tetramer have poten-
tial surfaces with moderately good staircase topographies
– not as staircase-like as the surface of the 46-bead model
but nonetheless more staircase-like than sawtooth. How-
ever because of the way complexity increases with the size
of the system, and the uncertainty of the validity of only
a small statistical sample of the sequences of stationary
points, it is useful at this point to turn to an approach
that reveals the character of the topography of a protein’s
potential surface, albeit usually averaged over a number
of trajectories, and links that information to the folding
character of the protein.

This is a method that begins with a topological repre-
sentation of the protein’s backbone in terms of the torsion
angles φ and ψ that can line only in specific regions – the
Ramachandran basins – for each amino acid residue. Each
of the four possible basins corresponds to a configuration,
crudely cis or trans, for each angle. Most amino acids have
locally stable forms in three of the four Ramachandran
basins; glycine, the simplest, with no side groups to cre-
ate steric hindrance, can be in any of the four possible
configurations. Proline, with its rigid ring structure, can
exist in only two basins, and any residue following proline
can also exist in only two basins, one of which is the same
as that of proline. The model designates the nature of the
side group on each residue and then, at each instant, as-
signs a basin – a torsional configuration – to each residue
in the chain. The configuration is allowed to change, un-
dergoing “flips” at a rate with a mean value of 1011/s, and
is examined every 64 ps to see whether any sequence of
six or more residues has a configuration that forms a pat-
tern consistent with a bit of secondary structure. When-
ever such a pattern appears, the mean flipping rate of the
residues in that group drops to 107/s. Likewise, when ter-
tiary structure forms, the mean rate drops to 103/s. If, by
contrast, any time 30% or more of a pattern loses its pat-
tern, the entire unit goes to the faster flipping rate. These
rates were all inferred from empirical generalizations from

experiment. The method has been summarized in detail
elsewhere [12–14].

One of the first proteins to which this approach was ap-
plied was bovine pancreatic trypsin inhibitor (BPTI) [13,
14]. The analysis showed the molecule folding to its native
structure, with a slow intermediate period and with disul-
fide bonds that apparently assist the folding process but
that break, so that the sulfur atoms find new partners in
the late stages to achieve the native structure. Moreover
there is one very brief intermediate period after a few mil-
liseconds of slow folding, of order 10−7 s, in which a great
deal of structure forms, in a sort of fast, highly collective
collapse.

The occurrence of identifiable stages during the folding
process make it possible to estimate forward rates for pas-
sage from one stage to the next. This information is com-
plemented by the corresponding reverse rates, which are
based on the premise that if 30% of a secondary-structured
region dismantles, the entire structured region returns to
random coil. From consideration of detailed balance and
the knowledge of forward and backward rates between two
stages, it becomes straightforward to construct the effec-
tive potential barrier connecting the two stages of folding
[15]. In this way, a mean potential topography emerged
from the computations of the “dihedral flipping” or topo-
logical model for the folding of BPTI. Characteristic of a
good folder, this effective potential is indeed staircase-like.

One further example that has been analyzed in a simi-
lar way is the rather special case of β-lactoglobulin, which
passes from a random coil to a stage with considerably
more α-helix than occurs in the final, native state. This
was the inference of transient circular dichroism measure-
ments. Later, there were objections to this inference be-
cause no stable intermediate could be found with a large
excess of α-helical structure. The topological simulation
shows [16] that there is a period of about 0.1 µs during
which there is considerable transient α-helix in rapid dy-
namic equilibrium with random coil. This persists until
a bit of tertiary structure forms to stabilize the α-helix
long enough for it to pass to the entropically more stable
β-sheet of the native, final structure. The topography of
the effective potential surface for this system was also de-
termined as it had been for BPTI, in this case for both
the most frequent set of paths and for the least frequent of
the paths that reach the native structure. Both are very
staircase-like, and are strikingly similar – not identical,
by any means, but with relatively flat regions in roughly
the same places along their time paths. As with clusters
and with BPTI, the sharp drops at the staircase “risers”
are associated with the nucleation of regions of ordered
structure.

5 Conclusions

The central conclusion of this work is a qualitative, even
semiquantitative set of connections linking the interpar-
ticle forces, the topographies of complex potential sur-
faces, the modes of nucleation and relaxation, and the
tendency of a picoscale system to be a glass-former or a
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structure-seeker. The systems with short-range forces have
sawtooth potentials, only few-body motions in their well-
to-well passages, little tendency to nucleate, and are, as a
result, glass-formers. Systems with long-range or effective
long-range forces have staircase potentials, highly collec-
tive, many-body motions in their well-to-well passages,
considerable tendency to nucleate ordered regions and are
structure-seekers. It remains ahead to determine how to
quantify the extent of sawtooth or staircase character of a
potential surface, and to make a quantitative link between
that and the ranges of the interparticle forces.
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